Time: 3 Hours Total Marks:80 Instructions: - 1) Question 1 is compulsory - 2) Attempt any three from the remaining questions. 1-a) Prove that the matrix $$\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1+i\\ 1-i & -1 \end{bmatrix}$$ is unitary. (5 Marks) 1-b) State Euler's theorem on homogeneous function of two variables and evaluate $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ where, $u = \frac{x+y}{x^2+y^2}$. (5 Marks) 1-c) Separate into real and imaginary part of $\cos^{-1}\left(\frac{3i}{4}\right)$. (5 Marks) 1-d) If $y = 2^x \sin^2 x \cos x$ find y_n . (5 Marks) 2-a) Show that $$\frac{\sin 5\theta}{\sin \theta} = 16\cos^4\theta - 12\cos^2\theta + 1$$ (6 Marks) 2-b) If $$u = tan^{-1}(\frac{x^2+y^2}{x-y})$$ P.T $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x \partial y} + y^2\frac{\partial^2 u}{\partial y^2} = -2sin^3u \cos u$ (6 Marks) 2-c) Test for consistency the following system & solve them if consistent. (8 Marks) $$x_1 - 2x_2 + x_3 - x_4 = 2$$ $x_1 + 2x_2 + 2x_4 = 1$ $4x_2 - x_3 + 3x_4 = -1$ 3-a) Show that minimum value of $u = xy + a^3(\frac{1}{x} + \frac{1}{y})$ is $3a^2$. (6 Marks) 3-b) Using Newton-Raphson method find the root of equation $2x^3 - 3x + 4 = 0$ lying between -2 and -1 correct to four places of decimals. (6 Marks) 11749 ## Paper / Subject Code: 58601 / Applied Mathematics - I. 3-c) If $$y^{1/m} + y^{-1/m} = 2x$$ prove that $(x^2 - 1)y_{n+2} + (2n + 1)xy_{n+1} + (n^2 - m^2)y_n = 0$. (8 Marks) - 4-a) Solve $x^5 = 1 + i$ and find the continued product of the roots. (6 Marks) - 4-b) Apply Gauss elimination method to solve the equations x+3y-2z=5, 2x+y-3z=1, 3x+2y-z=6. (6 Marks) - 4-c) For what value of λ the equations x+2y+z=3, $x+y+z=\lambda$, $3x+y+3z=\lambda^2$ have a solution and solve them completely in each case. (8 Marks) 5-a) Evaluate $$\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3}\right)^{1/x}$$. (6 Marks) 5-b) If $$u = f\left(\frac{y-x}{xy}, \frac{z-x}{xz}\right)$$, then show that $x^2 \frac{\partial u}{\partial x} + y^2 \frac{\partial u}{\partial y} + z^2 \frac{\partial u}{\partial z} = 0$. (6 Marks) 5-c) Prove that $$\log \left[\frac{\sin x + iy}{\sin x - iy} \right] = 2i \tan^{-1}(\cot x \ \tanh y)$$ (8 Marks) 6-a) Find the nth derivative of $$\frac{x}{(x-1)(x-2)(x-3)}$$ (6 Marks) 6-b) Reduce the following matrix to its normal form and hence find its rank. $$A = \begin{bmatrix} 3 & -2 & 0 & 1 \\ 0 & 2 & 2 & 7 \\ 1 & -2 & -3 & 2 \\ 0 & 1 & 2 & 1 \end{bmatrix}$$ (6 Marks) 6-c) i) Express $$(2x^3+3x^2-8x+7)$$ in terms of $(x-2)$ using Taylor's theorem. ii) Prove that $\tan^{-1}x=x-\frac{x^3}{3}+\frac{x^5}{5}+\dots$ (8 Marks) | | (2 Hours) [Total Mark | ks:60] | |----|--|-----------| | N. | (1) Question. 1 is compulsory. | | | | (2) Attempt any three questions from the remaining questions N0.2 to 6. | | | | (3) Assume suitable data wherever required. | | | | (4) Figures to the right indicate marks. | | | 1. | tempt any five questions from the following- | 5 | | | (a) Calculate atomic packing fraction of FCC Lattice.(b) Derive the De-Broglie wavelength. | DE)Y | | | (c) Draw the energy band diagram for p-n junction diode in equilibrium cond(d) Define: Persistent current, critical temperature, critical magnetic field. | ition. | | | (e) What is reverberation time? Explain its formula. | | | | (f) With the help of diagram state direct and inverse piezoelectric effect. (g) The resistivity of intrinsic material at room temperature is 2 x 10⁻⁴ Ohm-cr the mobility of electron is 6 m²/V-sec and mobility of hole is 0.2 m²/V-sec | | | | Calculate its intrinsic carrier density. | С. | | | | | | 2. | Prove that electron cannot survive within the nucleus. | 8 | | | An electron has a speed of 400m/s with uncertainty of 0.01%. Find the accuracy position. | cy in i | | | What is the Hall effect? obtain the expression for (a) Hall voltage and (b) Hall | | | | Coefficient. | 7 | | | | | | 3. |) With neat diagram of unit cell explain the structure of diamond crystal. | 8 | | | Explain variation of Fermi level with temperature in n-type semiconductor. What is the probability of an electron being thermally excited to the conduction If the Si is at 27°C. The band gap energy is 1.12eV (k=1.38X 10 ⁻²³ J/K) | 7
band | | 4. |) Distinguish between Type I and Type II superconductors. | 5 | | | A class room has dimension of $(20x15x10)$ m ³ ; the reverberation time is 3 sec.
Calculate the total absorption of its surfaces and average coefficient of absorption | 5 | | |) How ultrasonic waves are produced using quartz crystal in an oscillator? | 5 | | 5. | Show that for an intrinsic semiconductor, the Fermi level lies half way between Conduction and valence band | 5 | | | Find the depth of sea water from a ship on the sea surface if the time interval of 2 seconds is required to receive the signal back. | • | | 5 | Given that temperature of sea water = 20°C, Salinity of sea water = 10gm/lit | 5 | | | The lowest energy of an electron trapped in a one dimensional box is 3.2X10 ⁻¹⁸ J. Calculate the width of the box. Also calculate the next two energies | 5 | | | in eV the particle can have? | | | 6. |) Define ligancy and critical radius ratio. Calculate critical radius ratio for ligancy | 6. 5 | | |) Obtain one dimensional time dependent Schrodinger equation) Explain photovoltaic effect and write a note on solar cell. | 5
5 | | | | | 14904