University of Mumbai

ExaminationsSummer2022

Program: **BE Electrical Engineering** Curriculum Scheme: Rev 2019 'C' Scheme

Examination: SE Semester III

Course Code: **EEC301** and Course Name: **Engineering Mathematics III**

Time:2-hour30minutes Max.Marks:80

Choosethecorrectoption forfollowing questions. All the Questions Q1. arecompulsoryandcarry equalmarks 1. Find Laplace transform of e^{5t} OptionA: s-5OptionB: s + 5tOptionC: 5 s + 5tOptionD: s+52. Find $L[t \sin at]$ OptionA: 2s $(s^2 + a^2)^2$ 2as OptionB: $(s^2 + a^2)^2$ OptionC: $(s^2 + a^2)^2$ OptionD: None of the above In Fourier series of $f(x) = x\cos x$ in $(-\pi, \pi)$. The value of a_n is OptionA: OptionB: -1 OptionC: $(-1)^{n}$ OptionD: 1 $n^2 \rightarrow 1$ $f(x) = e^{-|x|}$ in the interval $(-\pi, \pi)$ is OptionA: Both even and odd function OptionB: Neither even nor odd OptionC: Odd function OptionD: Even function

5.	Which of the following functions is NOT analytic
OptionA:	Sinhz
OptionB:	Cosz
OptionC:	Z SSE
OptionD:	$z^2 + z$
6. OptionA:	Find the value of a if $F = (x - 2z)i + (y - 5x)j + (az + 2x)k$ is solenoidal
OptionA:	a = 2 $a = -2$
OptionC:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
OptionD:	
7.	The divergence and curl of $\overline{F} = x^2zi - 2y^3z^3j + xy^2z^2k$ at $(1, -1, 1)$ is
OptionA:	$\operatorname{div} \bar{F} = 0$, $\operatorname{curl} \bar{F} = 5$
OptionB:	$\operatorname{div} \bar{F} = 2$, $\operatorname{curl} \bar{F} = 8$
OptionC:	$\operatorname{div} \overline{F} = -2$, $\operatorname{curl} \overline{F} = -8$
OptionD:	$\operatorname{div} \bar{F} = 0$, $\operatorname{curl} \bar{F} = 0$
8.	If $A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & -1 & 0 \\ -4 & 5 & 0 \end{bmatrix}$ Find Eigen Values of $A^2 + 2A + I$
OptionA:	9,0,0
OptionB:	9,0,1
OptionC:	3,0,0
OptionD:	9,4,1
9.	A function $f(t)$ is periodic with period 2π if
OptionA:	$f(t+2\pi) = 0$
OptionB:	$f(t+2\pi)=2\pi$
OptionC:	$f(t+2\pi) = f(2\pi)$
OptionD:	$f(t+2\pi)=f(t)$
10	Find L^{-1} $\left[\frac{s+2}{s^2+4s+13}\right]$
OptionA:	e ^{2†} cos 3t
OptionB:	e ^{2t} sin 3 t C S S E S S S
OptionC:	e ^{-2t} cos 3t
OptionD:	e ^{-2t} sin 3t 2 2 2 2 2 2

Q2. (20 Marks Each)	Solve any Four out of Six5 marks each
ABBBBBBB	Evaluate $\int_0^\infty \left(\frac{\cos at - \cos bt}{t}\right) dt$
B	Find $L^{-1}\left[\tan^{-1}\left(\frac{a}{s}\right)\right]$
C	Obtain the half range Fourier sine series expansion for $f(x) = x \sin x$ in $(0,\pi)$
D	Find the analytic function $f(z)$ whose real part is $x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$

Е	Find the eigen values and eigen vector for $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$	
Е	Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)i + (3xz + 2xy)j + (3xy - 2xz + 2z)k$	
F	is both irrotational and solenoidal.	
Q3.	Solve any Four out of Six5 marks each	
(20 Marks Each)		
A	Find $L\left[\int_0^t e^{-2u}\cos^2u du\right]$	
В	Find the inverse Laplace transform by using convolution theorem $\frac{1}{(s^2+4s+13)^2}$	
С	Obtain the Fourier series for $f(x) = x$ in $(0,2\pi)$	
	Obtain the orthogonal trajectories for the family of curves	
D	$e^{-x} \cos y + xy = c$ where c is the real constant in the xy-plane.	
Е	Show that $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ satisfies Cayley-Hamilton theorem. Hence find A^{-1}	
F	Evaluate by using Green's theorem $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the closed region bounded $by y = \sqrt{x}$ and $y = x$ Solve any Four out of Six 5 marks each	
Q4.	Solve any Four out of Six 5 marks each	
(20 Marks Each)		
A	Evaluate $\int_0^\infty e^{-t} \int_0^t \left(\frac{\sin u}{u}\right) du dt$	
В	$L^{-1} \left[log \left(1 + \frac{4}{\varsigma^2} \right) \right]$	
C	Obtain the Fourier series for x^3 in $(-\pi,\pi)$	
D	Find the analytic function $f(z)$ whose imaginary part is $e^x(x \sin y + y \cos y)$	
E	If $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}$ then find A^{50}	
F	Use Stoke's Theorem to evaluate $\int_{C} \overline{F} d\overline{r}$ where $\overline{F} = x^2 I + xy j$ and C is the boundary of the rectangle $x=0$, $y=0$, $x=a$, $y=b$	

University of Mumbai Examination First Half 2022

Program: **Electrical Engineering**Curriculum Scheme: Rev 2019 C Scheme
Examination: SE Semester III

Course Code: EEC303 and Course Name: Fundamentals of Electrical Machines & Measurements

Time: Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Laminated cores, in electrical machines, are used to reduce	
Option A:	Copper loss Significant Copper loss	
Option B:	Eddy current loss	
Option C:	Hysteresis loss	
Option D:	All of the above	
	8	
2.	For a linear electromagnetic circuit, which of the following statement is true?	
Option A:	Field energy is less than the Co-energy	
Option B:	Field energy is equal to the Co-energy	
Option C:	Field energy is greater than the Co-energy	
Option D:	Co-energy is zero	
3.	Ward-Leonard control is basically a control method.	
Option A:	Field control.	
Option B:	Armature resistance control.	
Option C:	Armature voltage control.	
Option D:	Field diverter control.	
4. 00	The linear variable differential transducer is	
Option A:	Inductive transducer	
Option B:	Non-inductive transducer	
Option C:	Capacitive transducer	
Option D:	Resistive transducer	
7.4.6000		
5. 5.	Hall Effect transducer can be used to measure	
Option A:	Magnetic field	
Option B:	Angular displacement	
Option C:	Linear displacement	
Option D:	All of the mentioned	
10000 1000 V		
6.	What is the resolution of a 3 digit display on 1 V range?	
Option A:	1V	
Option B:	0.1 V	
Option C:	0.01 V	
Option D:	0.001 V	
5 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Successive approximation type DVM is based on the principle of	
Option A:	Successive approximation type DVM is based on the principle of	
Option B:	acceleration of an object	
Option C:	weight of an object velocity of an object	
Option C.	reactly of all object	

Option D:	momentum of an object
8.	When a current of 5A flows through a coil of linear magnetic circuit, it has flux linkages
0.	of 2.4 wb-turns. What is the energy stored in the magnetic field of this coil in Joules?
Option A:	
Option B:	
Option C:	
Option D:	
9.	Which of the following types of damping is used in a permanent magnet moving coil
	instrument?
Option A:	Air friction damping
Option B:	Eddy current damping
Option C:	Electromagnetic damping
Option D:	Fluid friction damping
10.	In digital frequency meter, the schmitt trigger is used for
Option A:	sinusoidal waveform into rectangular pulses
Option B:	scaling of sinusoidal waveforms
Option C:	providing time base
Option D:	none of the mentionned

Q2	Solve any Two Questions out of Three 10 marks each
A	Derive torque equation of Doubly excited system.
В	Draw and explain Electrodynamometer type instruments.
С	Explain with neat diagram Hopkinson's test.

Q3	Solve any Two Questions out of Three 10 marks each
A	Derive torque equation for Moving Iron Instrument.
В	A 220V dc shunt motor having an armature resistance of 0.25Ω carries an armature current of 50A and runs at 600 rpm If the flux is reduced by 10% by field regulator. Find the speed assuming load remains the same.
o C	Draw and explain Kelvin's double bridge.

Q4	Solve any Two Questions out of Three	10 marks each
A	Explain Ramp type digital voltmeter with block	diagram.
\mathbf{B}	Draw & explain characteristics of DC shunt mo	tor.
\$ 50 00 ACO 80	What is potentiometer and explain its working	with a neat diagram?

University of Mumbai Examination 2022

Program: **BE Electrical Engineering**Curriculum Scheme: Rev2019 (C-SCHEME)
Examination: Summer 2022/SE/Semester III

Course Code: EEC304 and Course Name: Electrical Power System-1

Time: 2 hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks.	
1.	In India system is adopted for transmission of electric power.	
Option A:	3-PHASE, 3 WIRE	
Option B:	3-PHASE, 4 WIRE	
Option C:	2-PHASE, 3 WIRE	
Option D:	2-PHASE, 4 WIRE	
	88 44 4 6 6 6 6 8 4 8 8 8 8 8 8 8 8 8 8	
2.	The higher the transmission voltage, the is the conductor material required.	
Option A:	More	
Option B:	Lesser	
Option C:	Medium	
Option D:	Very large	
3.	In a string of suspension insulators, if the unit nearest to the conductor breaks down, then other units will	
Option A:	also breakdown	
Option B:	remain intact	
Option C:	no breakdown will occur	
Option D:	Only the lowest string will breakdown.	
4.	A 3-phase transmission line is being supported by three disc insulators. The potentials across top unit (i.e., near to the tower) and middle unit are 8 kV and 11 kV respectively. Calculate (i) the ratio of capacitance between pin and earth to the self-capacitance of each unit (K).	
Option A:	0.375	
Option B:	0.357	
Option C:	0.753	
Option D:	0.537	
5.00000 5.0000	The three conductors of a 3-phase line are arranged at the corners of a	

	triangle of sides 2 m, 2.5 m and 4.5 m. Calculate the inductance per km of the line when the conductors are regularly transposed. The diameter of each conductor is 1.24 cm.	
Option A:	1.274mH	
Option B:	12.74mH	
Option C:	1.724mH	
Option D:	127.4mH	
•		
6.	Transmission lines are transposed to	
Option A:	Reduce copper loss	
Option B:	Reduce skin effect	
Option C:	Prevent interference with neighbouring telephone lines	
Option D:	Prevent short-circuit between any two lines	
7.	When bundle conductors are used in place of single conductors, the effective	
	inductance and capacitance will respectively	
Option A:	Increase and decrease	
Option B:	Decrease and increase	
Option C:	Decrease and remain unaffected	
Option D:	Remain unaffected and increase	
•	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
8.	Aluminium is now most commonly used conductor in transmission line than copper because	
Option A:	It is more conductive	
Option B:	Its tensile strength is more	
Option C:	It is costlier	
Option D:	It is light in weight	
•		
9.	In transmission line, distributed constants are	
Option A:	Resistance and shunt conductance only	
Option B:	Resistance and inductance only	
Option C:	Resistance, inductance and capacitance	
Option D:	Resistance, inductance, capacitance and shunt conductance	
* 0 X & 0		
10.	Which of the following generating plants have minimum operating costs.	
Option A:	Diesel plant	
Option B:	Nuclear Plant	
Option C:	Thermal Plant	
Option D:	Hydro-Electric Plant	

Q2. (20 Marks Each)	Solve any Two Questions out of Three	10 marks each
	What are the different stages in the power system? Draw the s representation of a power system.	ingle line
B	Draw a neat labelled diagram of nuclear power plant and elaborate its operation in brief.	
	What is string efficiency? Elaborate the methods for improvin	g string efficiency.

Q3 (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	Derive the expression for capacitance of a three phase transmission line with unsymmetrical spacing between conductors.
В	Using nominal π method , find the sending end voltage and voltage regulation of a 250 km, three phase, 50 Hz, transmission line delivering 25 MVA at 0.8pf lagging to a balanced load at 132 kV. The line conductors are spaced equilaterally 3 m apart. The conductor resistance is 0.11ohm/km and its effective diameter is 1.6 cm.
С	Write a short note on 1. Soil Resistivity and 2. Measurement of earth resistance.
Q4 (20 Marks Each)	Solve any Two Questions out of Three 10 marks each
A	What are the different methods of Neutral Grounding? Explain the features of solidly (effectively) grounded system and Resonant (Arc suppression coil) grounding.
В	Enlist all types of cables and explain the constructional features of H type and SL type cables.
С	What is per unit system? What are the advantages of per unit system?

University of Mumbai

Examinations Summer 2022

Time: 2 hour 30 minutes Max. Marks: 80

Q1.	Choose the correct option for following questions. All the Questions are compulsory and carry equal marks	
1.	Bipolar Junction Transistor	
Option A:	Voltage controlled device	
Option B:	Current controlled device	
Option C:	Very high input impedance device	
Option D:	None of the above	
2.	The MOSFET stands for	
Option A:	Metal oxidized selenium FET	
Option B:	Metal oxide surface FET	
Option C:	Metal oxide semiconductor FET	
Option D:	Metal of surface FET	
3.	An ideal operational amplifier has	
Option A:	infinite output impedance	
Option B:	zero input impedance	
Option C:	infinite bandwidth	
Option D:	All of the above	
4.	What is the purpose of differential amplifier stage in internal circuit of Op-amp?	
Option A:	Low gain to differential mode signal	
Option B:	Cancel difference mode signal	
Option C:	Low gain to common mode signal	
Option D:	Cancel common mode signal	
5.	Zener diodes are also known as	
Option A:	Voltage regulators	
Option B:	Forward bias diode	
Option C:	Breakdown diode	
Option D:	None of the mentioned	
6.	For common emitter configuration, which of the following is not the correct relation?	
Option A:	IC < IE	
Option B:	$IC = \beta IB$	
Option C:	$IC = \alpha IE$	
Option D:	IC = IE	
7.	Which is not considered as a linear voltage regulator?	
Option A:	Fixed output voltage regulator	
Option B:	Adjustable output voltage regulator	
Option C:	Switching regulator	
Option D:	Special regulator	
8.	An ideal op-amp requires infinite bandwidth because	

Option A:	Signals can be amplified without attenuation	
Option B:	Output common-mode noise voltage is zero	
Option C:	Output voltage occurs simultaneously with input voltage changes	
Option D:	Output can drive infinite number of device	
9.	Which is not the internal circuit of operational amplifier?	
Option A:	Differential amplifier	
Option B:	Level translator	
Option C:	Output driver	
Option D:	Clamper	
10.	How a perfect integration is achieved in op-amp?	
Option A:	Infinite gain	
Option B:	Low input impedance	
Option C:	Low output impedance	
Option D:	High CMRR	

Q2. (20 Marks Each)	Solve any Four out of Six	5 marks each
A	Draw output characteristics of BJT in CE configuration.	
В	Explain Zener diode as a voltage regulator.	
С	What is early effect in BJT?	
D	List out the ideal characteristics of OPAMP?	
Е	Write down advantages of MOSFET.	
F	What happens when pn junction diode is made forward be considering any suitable application	ias, explain

Q3.	Solve any Two Questions out of Three 10	marks each
(20 Marks Each)		
A		
	Q-point on DC load line	
В	Design a variable voltage regulator using LM 317 to product voltage of 10 volts.	ce output
C What is a 555 IC draw and explain the functional block diagram?		gram?

Q4.		
(20 Marks Each)		
A	Solve any Two	5 marks each
i.	Explain concept of virtual ground.	
ii.	Explain Schottky diode.	
iii.	Explain op-amp as window comparator.	
В	Solve any One	10 marks each
i.	Draw and explain Op-amp as inverting summing amplifier.	
ii.	Explain Types of biasing circuits of MOSFET.	