(3Hrs) Marks: 80

N.B.

- 1. Question No.1 is Compulsory.
- 2. Answer any three out of remaining five questions
- 3. Assume any suitable data wherever required but justified the same
- 4. Illustrate answer with sketches wherever required
- Q 1 Answer any four from the following questions. (20)
- a. Derive the equation for capacitance of three phase line equilateral
- b. State advantages of Per Unit System.
- c. Describe the significance of transposition of three phase overhead transmission lines.
- d. Illustrate how the concept "**Method of Images**" can be used to analyze the effect of earth on transmission line capacitance
- e. Illustrate the term step potential and touch potential.
- Q 2 a) Calculate the inductance of each conductor in a 3-phase, 3-wire system when the conductors are arranged in a horizontal plane with spacing such that $D_{31} = 4m$; $D_{12} = D_{23} = 2m$. Assume, conductors are transposed and have a diameter of 2.5 cm.
 - b) 3-phase, 50 Hz, 16 km long overhead line supplies 1000 kW at 11kV, (10) 0·8 p.f. lagging. The line resistance is 0·03 Ω per phase per km and line inductance is 0·7 mH per phase per km. Calculate ABCD parameters, sending end voltage, sending end current and voltage regulation of the transmission line.
- Q 3 a) Derive expression for capacitance of 3 phase line with unsymmetrical (10) spacing.
 - b) Figure shows one line diagram of a power system. Draw impedance (10) diagram of the network. Choose a base of 100MVA, 220kV in 50Ω line. Ratings of the equipment are:

Generator: 40 MVA, 25kV, X'' = 20% Syn. Motor: 50 MVA, 11kV, X'' = 30%

Transformer T1: 40 MVA, 33/220kV, X= 15%

Transformer T2: 30 MVA, 11/220kV, X = 15%

- Q 4 a) Derive the expressions for A, B, C, D constant and draw phasor (10) diagram for medium transmission line in nominal π method.
 - b) A single circuit 460 kV line using two bundle conductors per phase as shown in Fig. The dia of each conductor is 5.0 cm. Calculate (i) capacitance per phase, (ii) charging current per phase, iii) Charging volt amperes. Assuming complete transposition of the line.

- Q 5 a) Define Neutral grounding. Discuss the advantages of neutral grounding. (10) Illustrate solid grounding in detail.
 - b) Name the various components of Power cable. Illustrate the significance (05) of inner sheath (Bedding) in cable.
 - c) Derive the expression for flux linkages with the conductor due to internal flux linkage of a conductor itself with ignoring the effect of any other conductor.
- Q 6 a) Derive the expression for inductance of single phase two wire line. (10)
 - b) What do you mean by insulation resistance of the cable? Derive the (10) expression for insulation resistance of single core cable.

[3 Hours] [Total Marks: 80]

)

Instructions:

- 1. Question No: 1 is compulsory.
- 2. Answer any three from the remaining five questions.

1			(5 x 4		
	a)	Recall the h-parameter equivalent model of Common Emitter voltage divider bias configuration and define all the h-parameters.	`		
	b)	Interpret the Drain-source characteristics of n-channel depletion type MOSFET with a neat figure for different values of V _{GS} .			
	c)	Draw the circuit diagram of op-amp based integrator circuit and write the expression of voltage gain.			
	d)	State the application of Opto-isolator with a neat figure.			
2	a)	Discuss the need of biasing in BJT amplifiers. Illustrate the voltage divider biasing technique in detail.			
	b)	Draw the h-parameter equivalent model of a voltage divider bias Common emitter BJT amplifier and derive expression of voltage gain.	(10)		
3	a)	With a neat figure explain the construction and working principle of n-channel depletion type MOSFET.	(10)		
	b)	Illustrate the different biasing techniques employed in MOSFET amplifiers.	(10)		
4	a)	Explain op-amp as a non-inverting amplifier. Design a non-inverting amplifier for voltage gain of 11.	(10)		
	b)	Illustrate with neat diagram, the application of Op-amp as adder circuit. Derive the output expression.	(10)		
5	a)	Explain the construction and working of Schottky diode.	(10)		
	b)	Explain the block diagram of op-amp. Draw its frequency response characteristics.	(10)		
6		Write short notes on ANY TWO			
	1)	Astable Multivibrator using IC555	(20)		
	2)	Zener diode as clipper			
	3)	LM317 as Adjustable voltage Regulator			

29241 Page 1 of 1

Time: 3 hour Max. Marks: 80

Note: 1) Question 1 is compulsory.

- 2) Attempt any 3 questions from Question 2 to Question 6
- 3) Figures to the right indicate full marks.

Q1	Attempt All questions	Marks				
a)	If $A = \begin{bmatrix} -1 & 0 & 0 \\ 2 & -3 & 0 \\ 1 & 4 & 1 \end{bmatrix}$ then find the eigen values of A^3	5				
b)	Find Laplace transform of $f(t) = te^t \cos 2t$	5.00				
c)	Find the Fourier Series for $f(x) = x^2$, where $x \in (-\pi, \pi)$					
d)	Determine the constant a, b, c, d if $f(z) = x^2 + 2axy + by^2 + i(dx^2 + 2cxy + y^2)$ is analytic.					
Q2	The state of the s					
a)	A vector field \overline{F} is given by $\overline{F} = (y \sin z - \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k$ Prove that \overline{F} is irrotational.	6				
b)	Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	6				
c)	Show that the function $u = \sin x \cosh y + 2\cos x \sinh y + x^2 - y^2 + 4xy$ satisfies Laplace's equation, also find analytic function.	8				
Q3						
a)	If $\bar{F} = xye^{2z}i + xy^2coszj + x^2cosxyk$ find $div\bar{F}$ and $curl\bar{F}$	6				
b)	Find an analytic function whose real part is $u = y^3 - 3x^2y$. Also find the	6				

- b) Find an analytic function whose real part is $u = y^3 3x^2y$. Also find the corresponding imaginary part.
- Show that the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ is diagonalizable and hence find the transforming matrix and diagonal matrix.

30631 Page **1** of **2**

Q4

a) Find
$$\nabla \phi$$
 at point $(1, -2, -1)$, where $\phi = 4xz^2 + x^2yz$
b)

Evaluate $\int_0^\infty e^{-2t} sin^3 t \ dt$, using Laplace transforms

C) Using Partial Fraction method find
$$L^{-1}\left[\frac{s}{(s^2+1)(s^2+4)(s^2+9)}\right]$$

Q5

a) Find
$$L\left\{t\sqrt{1+\sin t}\right\}$$

b) Consider the vector field
$$\bar{F}$$
 on \mathbb{R}^3 defined by
$$\bar{F}(x,y,z) = y \,\hat{\imath} + (z\cos(yz) + x) \,\hat{\jmath} + (y\cos(yz)) \,\hat{k}$$
 Show that \bar{F} is conservative.

c) Find the Fourier Series for
$$f(x)$$
 in $(-\pi, \pi)$ where
$$f(x) = 1 + \frac{2x}{\pi} - \pi \le x \le 0$$
$$= 1 - \frac{2x}{\pi} \quad 0 \le x \le \pi$$

Hence deduce that
$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$$

Q6

a) Obtain Fourier series expansion of
$$f(x) = 9 - x^2$$
 in $(0, 2\pi)$

b) Find Eigen values and Eigen vectors of
$$A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$$

c) i) Find
$$L^{-1}\left\{\log\left(\sqrt{\frac{(s+a)}{(s+b)}}\right)\right\}$$

ii) Find
$$L^{-1}\left\{\frac{1}{s^2-2s+5}\right\}$$

30631

(3 Hours) Total Marks: 80

N.B: (1) Question No. 1 is compulsory.

- (2) Attempt any three from the remaining questions.
- (3) Figures to the right indicate full marks.
- 1. Attempt all questions.
 - (a) Obtain Z parameters in terms of Y parameters. (05)
 - (b) Find poles and zeroes of following function and plot pole zero diagram. (05)

$$F(s) = \frac{s^2 + 25}{(s+1)(s^2+9)}$$

- (c) Explain the condition for symmetry and reciprocity in ABCD parameters. (05)
- (d) Obtain ABCD parameters in terms of h parameters. (05)
- 2. (A) For the network shown in figure below, determine the current i (t) when the switch is closed at t = 0 with zero initial conditions. (10)

- (B) Write suitable definition or expression for the following: (10)
 - i. Transient Response ii. Steady State Response
- iii. Zero Input Response iv. Zero State Response

3. (A) The pole zero diagram of the driving point impedance function of the network is shown below. At dc the input resistance is resistive and equal to 2Ω . Determine values of R, L and C. (10)

(B) Find Z and Y parameters of given two port network shown. (10

4. (A) Find Z, Y, h and ABCD parameters of given two port network shown. (10)

(B) In the network shown in figure below, the switch is changed from the position 1 to the position 2 at t = 0, steady position having reached before switching. Find the values of i, di/dt and d^2i/dt^2 at $t = 0^{+}$. (10)

5. (A) In the given network of figure, the switch is opened at t=0. Solve for V, dv/dt and d^2v/dt^2 at $t=0^+$.

(10)

(B) The voltage V(s) of a network is given by,

(10)

$$V(s) = \frac{3s}{(s+2)(s^2+2s+2)}$$

Plot its pole-zero diagram and hence obtain v(t).

6. (A) Obtain the impedance function Z(s) for which pole-zero diagram is shown in figure below: (10)

31254

(B) Determine the voltage transfer function $\frac{V2}{V1}$ for the network shown in figure below:

(10)

		(3 Hours)			Total Mark	ks: 80	
N.B: (1) Q	uestion No. 1 is	s compulsory.					
(2) A	ttempt any thr	ee from the re	maining ques	tions.	THE STATE OF THE S		
(3) Fi	gures to the ri	ght indicate fu	ll marks.			LIP O	
(4) Ea	ach question is	of 20 Marks	25			Ę,	
0.1	A 44 4 4						
Q.1	Attempt any 4	J = / 1/a	matia field			% <u>-</u>	
A B		y stored in mag sses occurring				5) 3 5	
C		advantages of d			neters?	5 5	
D		applications of			ictors.	5	
E		ition and sensit				5	
_			, J	39			
Q.2			3				
A	Explain in bri	ef the principle	e of electro-me	echanical en	ergy conversion	10	
	and develop a model of electro-mechanical energy conversion device.						
В	Explain rheos	tatic braking an	d plugging of	DC shunt mo	otor.	10	
Q.3				3			
A	Explain Maxwells inductance bridge to measure self-inductance, derive the equation of self-inductance and draw phasor diagram.						
						40	
В	7		- A Y	A . / =	rmature current ics of DC shunt	10	
	motor.						
Q.4	T 1 3 141	8		, DC		10	
A	-0.	neat diagram Sv				10	
В		diagram and wa		i volulleter (DVM) with the	10	
0.5							
Q.5	Evoluin the	concept of de	publy excited	machines	and derive the	10	
A	- V	the electromag	-	macmines	and derive the	10	
В	. -	ing bridge with	•			10	
D	Explain Sener	ing oriage with	neat diagram.			10	
Q.6							
A	What are tran	sducers? Give	a brief classi	fication of t	ransducers with	10	
B	^ V'•	onstruction and	working princ	iple of digita	l Tachometer.	10	