Paper / Subject Code: 49381 / Engineering Mathematics-III

(Time: 3 hours) Max. Marks: 80

- N.B. (1) Question No. 1 is compulsory.
 - (2) Answer any three questions from Q.2 to Q.6.
 - (3) Use of Statistical Tables permitted.
 - (4) Figures to the right indicate full marks.

Q1 (a) Find Laplace transform of
$$\frac{\cos\sqrt{t}}{\sqrt{t}}$$
 given that $L\{\sin\sqrt{t}\} = \frac{\sqrt{\pi}}{2s^{3/2}}e^{-(1/4s)}$ [5]

(c) Find inverse Laplace transform of
$$\frac{2s-1}{s^2+8s+29}$$
 [5]

(d) If $f(z) = qx^2y + 2x^2 + ry^3 - 2y^2 - i(px^3 - 4xy - 3xy^2)$ is analytic, find the values of p, q, and r [5]

Q2 (a) Find Laplace transform of
$$e^{3t}$$
 f(t) where f(t)=
$$\begin{cases} t-1, & 1 < t < 2 \\ 3-t, & 2 < t < 3 \\ 0, & otherwise \end{cases}$$
 [6]

- (b) Two unbiased dice are thrown. If X represents sum of the numbers on the two dice. [6] Write probability distribution of the random variable X and find mean, standard deviation, and P(|X-7|≥3)
- (c) Obtain Fourier series for $f(x) = x \sin x$ in the interval $0 \le x \le 2\pi$. [8]
- Q3 (a) Using Milne-Thompson's method construct an analytic function f(z) = u + iv in terms of z where $u+v = e^x(\cos y + \sin y) + \frac{x-y}{x^2+y^2}$ [6]
 - (b) Using convolution theorem find the inverse Laplace transform of $\frac{(s+3)^2}{(s^2+6s+5)^2}$ [6]
 - (c) Fit a parabola $y=a+bx+cx^2$ to the following data and estimate y when x=10 [8]

	X	100	2	² 3	40	5	6	7	8	9
7	y	2	6	7	8	10	11 %	11	10	9

Q4 (a) Find Laplace transform of
$$e^{-(1/2)t} t f(3t)$$
 if $L\{f(t)\} = \frac{1}{s\sqrt{s+1}}$ [6]

11988 Page 1 of 2

Paper / Subject Code: 49381 / Engineering Mathematics-III

(b) Find half range sine series for $f(x) = x - x^2$, 0 < x < 1. [6]

Hence deduce that $\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} \dots = \frac{\pi^3}{32}$

- (c) Given regression lines 6y=5x+90, 15x=8y+130, $\sigma_x^2=16$. [8] Find i) \bar{x} and \bar{y} , ii) r, iii) σ_y^2 and iv) angle between the regression lines
- Q5 (a) Can the function $u = r + \frac{a^2}{r} \cos \theta$ be considered as real or imaginary part of an analytic function? If yes, find the corresponding analytic function. [6]
 - (b) An unbiased coin is tossed three times. If X denotes the absolute difference between the number of heads and the number of tails, find moment generating function of X and hence obtain the first moment about origin and the second moment about mean.
 - (c) Evaluate $\int_0^\infty e^{-2t} \cosh \int_0^t u^2 \sinh u \cosh u du dt$ [8]
- Q6 (a) Find inverse Laplace transform of $\frac{1}{(s-2)^4(s+3)}$ using method of partial fractions. [6]
 - (b) If a continuous random variable X has the following probability density function $f(x) = \begin{cases} k e^{-\frac{x}{4}}, & \text{for } x > 0 \\ 0, & \text{elsewhere} \end{cases}$ find k, mean and variance.
 - (c) Find half range cosine series for f(x) = x, 0 < x < 2.

 Hence deduce that (i) $\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \frac{1}{7^4} + ... = \frac{\pi^4}{96}$

ii)
$$\frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$$

Paper / Subject Code: 49385 / Computer Graphics

	(3	Hours)			(E)KO		Total Marks	: 80
	N.B:	 Question Attempt Assume a 	any 3 from	remaining		justify the a	ssumptions	
Q.	l Attem	pt any Four .	10 C			ECHAN S		20
	a) Giv	e difference b	etween rand	lom scan dis	play and ras	ster scan disp	olay.	
	b) Def	ine Aliasing,	Describe dit	ferent antial	iasing techi	niques.		
	c) Con	npare DDA a	nd BRESEN	HAM line d	rawing algo	orithm.		
	d) Exp	olain point cli	pping algori	thm.				
	e) Giv	e fractal dime	ension for K	OCH curve.				
Q.2	2 a) Der	ive formula fo	or mid-point	circle algor	ithm.			10
		en a line AB DA algorithm) and B(0,0)	calculate a	ll the points of	of line AB using	10
Q.	3 a) Wit	h neat diagrai	n explain C	omposite tra	nsformation	i.		10
	b) Des	scribe what is	Homogeneo	ous coordina	tes.	3		10
Q. [∠]	4 a) Wit	h neat diagrar	n explain w	indow to vie	wport coord	dinate transfo	ormation.	10
	b) Wit	h neat diagra	m explain Si	utherland Ho	odgman pol	ygon clipping	g algorithm.	10
Q.:	5 a) Def	ine projection	, with neat o	liagram desc	cribe planar	geometric pr	rojection.	10
A. C.	b) Des	scribe propert	es of BEZII	ER curve.				10
Q.	6 a) Des	cribe various	principles o	f traditional	animation.			10
	b) Wri	ite short note	on Depth bu	ffer algorith	m.			10

(3 Hours) **Total Marks: 80** N.B: (1) Question No. 1 is compulsory. (2) Attempt any three questions out of the remaining five questions. (3) Figures to the right indicate full marks. (4) Make suitable assumptions wherever necessary. Q.1 Compare linear and non-linear data structures. [05]Explain the advantage of circular queue over linear queue. Write a [05] function in C language to insert an element in circular queue. Define binary search tree. Discuss the case of deletion of a node in binary [05] search tree if node has both the children. (d) Write a C function to search a node in doubly linked-list. [05] Q.2 (a) Construct AVL tree for the following sequence: [10] 67,34,90,22,45,11,2,78,37,122 Write algorithm for postfix evaluation. Demonstrate the same step by step [10] for the expression: 967 * 2/-Q.3 Write a program to perform following operations on a circular linked list: [10] i) insert a node from the end of the list, ii) delete first node, iii) count the number of nodes with even values, iv) display the list. [10] Write a C program to simulate linear queue as linked list. Construct Huffman tree and find the Huffman codes for each symbol [10] given below with frequency of occurrence: Symbol p 25 Frequency 20 17 33 40 Explain the various ways to represent graph in the memory with example. [05] Construct binary search tree from given traversal sequences: [05] In-order traversal D E В A G Η J Pre-order D Α G traversal Apply linear probing to hash the following values in a hash table of size [10] 11 and find the number of collisions: 67,44,90,12,83,52,23,87,79. Define topological sorting. Perform topological sorting for the following [10] graph: Construct a B tree of order 3 by inserting the following given elements as: [10] 77,97,75,64,53,14,26,49,82,59. Show the B tree at each step of insertion. Write a function in C for DFS traversal of graph. Explain DFS graph [10] traversal with suitable example.

Paper / Subject Code: 49384 / Digital Logic & Computer Architecture

		(3 hours) Total Marks:	80
N.B.		 Question No. 1 is compulsory Attempt any three questions from remaining five questions Assume suitable data if necessary and justify the assumptions Figures to the right indicate full marks 	
Q1	A	Convert i) 123 in to binary ii) (AB9) ₁₆ in to Decimal iii) (351) ₈ in to decimal iv) 129 in to BCD v) 64 in to gray code	05
Ω1	В	Draw the single and double precision format for representing floating point number using IEEE 754 standards and explain the various fields	05
()1	C	Explain SR Flip Flop	05
	D	Differentiate between Hardwired control unit and Micro programmed control unit	05
Q2	A	Draw the flow chart of Booths algorithm for signed multiplication and Perform 5 x 2 using booths algorithm	10
	В	Explain the different addressing modes.	10
Q3	A	For 132.65 obtain the IEEE 754 standards of Single precision and Double precision format	10
	В	Explain Micro instruction format and write a microprogram for the instruction ADD R_1 , R_2	10
Q4	A	Consider a 4-way set associative mapped cache with block size 4 KB. The size of the main memory is 16 GB and there are 10 bits in the tag. Find-1. Size of cache memory 2. Tag directory size	10
	В	Explain Flynn's classification	10
Q5	Α	Explain different types Distributed and Centralized bus arbitration methods	10
	В	Describe the detailed Von-Neumann Model with a neat block diagram	05
	C	Describe the characteristics of Memory.	05
Q6		Write Short notes on	20
ST		a) Grey code, BCD, Excess-3 Code with example	
		b) Encoder and Decoder	
		c) Cache coherence	
		d) Instruction Pipelining	

Paper / Subject Code: 49385 / Computer Graphics

	(3	Hours)			(E)KO		Total Marks	: 80
	N.B:	 Question Attempt Assume a 	any 3 from	remaining		justify the a	ssumptions	
Q.	l Attem	pt any Four .	10 C			ECHAN S		20
	a) Giv	e difference b	etween rand	lom scan dis	play and ras	ster scan disp	olay.	
	b) Def	ine Aliasing,	Describe dit	ferent antial	iasing techi	niques.		
	c) Con	npare DDA a	nd BRESEN	HAM line d	rawing algo	orithm.		
	d) Exp	olain point cli	pping algori	thm.				
	e) Giv	e fractal dime	ension for K	OCH curve.				
Q.2	2 a) Der	ive formula fo	or mid-point	circle algor	ithm.			10
		en a line AB DA algorithm) and B(0,0)	calculate a	ll the points of	of line AB using	10
Q.	3 a) Wit	h neat diagrai	n explain C	omposite tra	nsformation	i.		10
	b) Des	scribe what is	Homogeneo	ous coordina	tes.	3		10
Q. [∠]	4 a) Wit	h neat diagrar	n explain w	indow to vie	wport coord	dinate transfo	ormation.	10
	b) Wit	h neat diagra	m explain Si	utherland Ho	odgman pol	ygon clipping	g algorithm.	10
Q.:	5 a) Def	ine projection	, with neat o	liagram desc	cribe planar	geometric pr	rojection.	10
A. C.	b) Des	scribe propert	es of BEZII	ER curve.				10
Q.	6 a) Des	cribe various	principles o	f traditional	animation.			10
	b) Wri	ite short note	on Depth bu	ffer algorith	m.			10