Paper / Subject Code: 36901 / POWER SYSTEM ANALYSIS

Total Marks -80

N.B	.:- (1) Question No.1 is compulsory.	10,
	(2) Attempt any three questions out of remaining five questions.	90
		3) Draw neat diagrams wherever it is necessary.	300
	`		
Q 1.		Answer the following questions.	Y
	A)	Write a short note on phase shift in star-delta transformers.	05
	B)	Discuss the phenomenon of corona.	05
	C)	Explain the following typical cases of line specifications;	05
		1) Open circuited line.	
	D)	2) Short circuited line.	O.
	D)	What is tower footing resistance?	05
Q 2	a)	Explain in brief Selection of circuit breakers and short circuit MVA.	10
\tilde{Q}^2	b)	Discuss Z _{BUS} building algorithm.	10
~ -	-,		
Q 3	a)	Derive the necessary equation to determine the fault current for a line-to-line fault.	1(
		Draw the diagram showing the inter-connection of sequence networks.	
Q 3	b)	Explain the zero sequence impedance networks of transformer.	1(
Q 4	a)	Discuss the phenomenon of wave reflection and refraction. Derive expressions for	10
Ţ	a)	reflection and refraction coefficients.	1(
Q 4	b)	How can Bewely Lattice be drawn? Discuss its use.	10
0.5	2)	Define disconting shifted valence and visual shifted valence. On what feature do they	11
Q 5	a)	Define disruptive critical voltage and visual critical voltage. On what factors do they depend? Derive the equations for calculating these voltages.	1(
Q 5	b)	Discuss the use of;	1(
ŲJ	25.7	a) Ground wires.	1
		b) Surge arrestors.	
		Transition was investigated to disc. Also Francis the effect of time leavet 1224	11
Q 6	(a)	Explain surge impedance loading. Also Explain the effect of line length, load power and power factor on voltage and reactive power.	10
Q6	b)	Discuss the maximum power transfer and stability considerations in transmission line.	10
V.V.	80 10	\$\`\C\`\O\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	

Duration 3hrs

Time: 3 Hrs

Marks:80

1	a)													
	b)	What is the significance of reluctance power? By using excitation circle and power circle explain development of V curves and O												
	D)	curves	ation	CIICIC	and	power	Z O	CAPI	HII GC	veropi.	inent of		CSan	
2	a)	Explain Stead	y state	e anal	ysis c	of sync	chrone	ous ma	chine					39,39
	b)	How armature	-		-	/= V · . (\ ' & > \ ' .	y — ('		h' ~ \ . '	ernator.	Illustra	ate the	effect
		under differen				7.33			X 40		87. T			?
3	a)	Explain Blond							\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- CO. V.				
	b)													
	per slot. The pitch of the coil is one slot less than the p									· V= · (\				_
		3300 V betwee		ies or	i opei	ı circi	iit wit	h sinu	ısoidal	flux	distribu	tion d	etermi	ne the
	,	useful flux per	-	A.A.				333					0.066	. /
•	a)	A 220 V, 50 I										ice of	2 60.0	2 /
		phase, gave	the ic	onow	ing da	ata 10r	U.C a	ina S.	C chai	racteri	stics			
		Field	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.8	2.2	2.6	3.0	3.4
		current	0.2	20.4	70.0	0.0	4.0	01.2	1.4	1.0	52.2	2.0	3.0	3.4
		If(amp)			NA A		Sp S	7706						
		O.C.voltage	29	58	87	116	146	172	194	232	261.5	284	300	310
		Ef (volts)	999				400	\$ 55	N. A.	202	201.5	20.		310
		S.C.current	\$ 35°	500	900	725.0		40	5 2					
		- 1.957 /2Y /XV /XX 1.612 /2	533	3000				0 X X	0					
		lsc (amp)	12 (132:9	n at fi	ıll loa	d curr	ent of	40 am	p at 0	.8 p.f. la	gging	by EN	ИF
	É	Isc (amp) Find % voltag	e regu	пано				() ()		•	-		•	
	8	Find % voltagemethod and M					7.00							
.0	b)	Find % voltag method and M	IMF n	netho	d >	hy sh	ort circ	cuit ch	aracte	eristics	of a ger	nerato	r is a s	traight
	b)	Find % voltag method and M	IMF n	netho	d >	hy sh	ort cire	cuit ch	aracte	eristics	of a gei	nerato	r is a s	traight
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	b)	Find % voltagemethod and M Explain with p line. Derive the exp	IMF nohasor	netho diag	d ram w activ		20 020 J							traight
	a)	Find % voltag method and M Explain with p line. Derive the exp machine. Also	IMF nohasor oression plot	netho diago on foo P-δ c	d ram w activ urve.	e and	reacti	ve pov	wer of	salier				traight
	a)	Find % voltagemethod and M Explain with p line. Derive the exp	IMF nohasor oression plot	netho diago on foo P-δ c	d ram w activ urve.	e and	reacti	ve pov	wer of	salier				traight
35/1/35	a)	Find % voltag method and M Explain with p line. Derive the exp machine. Also	IMF nohasor oressic oressic oressic oressic oressic	netho diag on for P-δ c d ope	d ram w activ urve. cration	e and	reacti	ve pov	wer of	salier				traight
35/1/35	a)	Find % voltagemethod and M Explain with pline. Derive the explain the new Explain the new Write short no	IMF not a solution of the solu	netho diago on foo P-δ c d ope n any	d ram w active active two	e and	reacti	ve pov	wer of	salier				traight
500000000000000000000000000000000000000	a) b)	Find % voltagemethod and M Explain with pline. Derive the explain the new Mrite short no	oressic optobled an otes or g power motor	nethor diagrams on for P-8 c d ope any er any er any	d ram w active urve ration two I sync	e and of sy	reacti nchro	ve pov	wer of	salier				traight

Instructions:

• Question No: 1 is compulsory.

• Figures to the right indicate full marks.

• Answer any three from the remaining five questions.

• Assume any suitable data wherever required but justify the same.

(2) Attempt any three questions out of remaining five questions.

Duration – 3 Hours

N.B.:- (1) Question No.1 is compulsory.

requirements for the same.

Total Marks - 80

	(3) Assume suitable data if necessary and justify the same.	R
Q 1.	Answer the following questions. A) What are the advantages of Track Electrification? B) Explain the effect of adhesion on train movement. C) Draw and explain any two types of photometers. D) What are the different configurations of Hybrid Electric Vehicle?	20
Q 2 a)	What are different methods of approximation of speed-time curves?	10
Q 2 b)	Write a detailed note on tractive effort.	10
Q 3 a)	Explain working principle of Incandescent Lamps. Compare Incandescent Lamps	10
Q 3 b)	with Fluorescent Lamps. Write short notes on different methods of electric welding.	10
Q 4 a)	Draw and explain different types of refrigeration cycle.	10
Q 4 b)	Draw and explain speed control methods for traction purpose	10
Q 5 a)	Write a short note on specific energy consumption of traction.	10
Q 5 b)	Explain and Compare the types of motors used for traction in EV/HEV	10
Q 6 a)	Draw and explain the electric circuit of a domestic refrigerator.	10
Q 6 b)	Explain and the working principle of arc furnace with emphasis on power supply	10

Q.P. CODE: 38390

Time: 3 Hours Marks: 80

Note:

- Question No. 1 is compulsory.
- Answer any **three** from the remaining five questions.
- Assume suitable data if necessary and justify the same.

Q. 1 Answer any FOUR of the following

20

- a. What is the significance of gain margin and phase margin of a system?
- b. Define break-away point and break-in point in root locus plot of a system.
- c. Represent the given system in phase variable form of state space representation. Also draw SFG.

$$G(s) = \frac{s^2 + 35s + 120}{(s+8)(s+9)(s+7)}$$

- d. Compare open loop and closed loop control systems with the help of suitable example.
- e. Obtain series electrical analog of the following system.

Q.2 a. Reduce the block diagram shown below to a single block representing the transfer function, G(s) = C(s)/R(s)

Page 1 of 3

Q.P. CODE: 38390

10

10

b. Draw Bode plot for the following unity feedback system, determine 10 ω_{qc} , ω_{pc} , PM, GM and comment on the stability of the system.

$$G(s) = \frac{(s+3)}{(s+2)(s^2+2s+25)}$$

Q.3 a. Using Mason's rule, find the transfer function, G(s)=C(s)/R(s) for the system represented by

b. Given the system represented in state space as follows:

$$\dot{x} = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \\ -2 & -1 & -3 \end{bmatrix} x + \begin{bmatrix} 7 \\ 1 \\ -2 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -3 & 4 \end{bmatrix} x$$

Convert the system to one where the new state vector, z is

$$z = \begin{bmatrix} 4 & -1 & 0 \\ 2 & 3 & -2 \\ 8 & 5 & 1 \end{bmatrix} x$$

Q.4 a. For the following unity feedback system, using Routh Hurwitz criteria 10 determine the range of K to ensure stability. What should the value of K for the system response to oscillate, and determine the frequency of oscillation.

$$G(s) = \frac{K(s^2 + 1)}{(s+1)(s+2)}$$

b. Obtain Laplace transform solution of the following system. Consider unit
 step signal as input to the system

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -3 \end{bmatrix} x + \begin{bmatrix} 10 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = [1 \ 0 \ 0]x$$

Q.5 a. Derive and explain Nyquist stability criteria.

b. For each pair of second order system specifications that follows, find the location of the second order pair of poles.

b. %OS = 10%; Ts=4 sec

Page 2 of 3

Q.P. CODE: 38390

Q.6 a. A unity feedback system has an open-loop transfer function

10

$$G(s) = \frac{K(s+1)}{s(s-1)}$$

Sketch the root locus and determine the range of K for the system to be stable.

b. A unity feedback system has the following forward path transfer function:

10

$$G(s) = \frac{1000(s+8)}{(s+7)(s+9)}$$

- a. Evaluate system type, K_p , K_v and K_a .
- b. Use answer in (a) to find steady state errors for standard step, ramp and parabolic inputs
- Explain how many integrations in the forward path are required to get zero steady state error for standard step, ramp and parabolic inputs.

Paper / Subject Code: 36905 / MICROCONTROLLER AND ITS APPLICATION

Q.P. Code: 37275

		(3 Hours) [Total Marks:80]	30 30 30
N.B.	(1)	Question no.1 is compulsory.	9, 83 g
	(2)	Attempt any three from the rest.	100
	(3)	Make any suitable assumption wherever required.	
Q.1		Answer any four.	100 C
	(a)	What is timer roll over in PIC 18? What happens after roll over?	5M
	(b)	Explain the Status Register of PIC18 Microcontroller.	5M
	(c)	Explain the pipelining concept in PIC18 Microcontroller	5M
	(d)	What is the difference between interrupt and polling?	5M
	(e)	What are the steps taken by the microcontroller when an interrupt is activated?	5M
Q.2	(a)	Which are the different addressing modes of PIC18 Microcontroller?	10M
	(b)	Explain the memory organization (Program and Data Memory) of PIC18 Microcontroller.	10M
Q.3	(a)	Explain stack and subroutine. Also explain the instructions associated with them.	10M
	(b)	Write a C18 program to transmit message "YES" serially at 9600 baud rate, 8 bit data and 1 stop bit. Do this continuously.	10M
Q.4	(a)	Explain the following terminology related to PIC18 1) USART 2) SPBRG 3) TXSTA 4) RCSTA	10M
	(b)	Write an Assembly language program using Timer 0 to generate a square wave of 200Hz frequency on Port A pin RA0. Use 16 bit programming technique with 64 prescaler. The internal frequency is 10MHz.	10M
Q.5	(a)	Explain Global Interrupt Enable (GIE) and Peripheral Interrupt Enable (PEIE) concept with appropriate logical diagram. Also explain INTCON resister.	10M
1000 C C C C C C C C C C C C C C C C C C	(b)	Write an Assembly language program to rotate the stepper Motor by monitoring the status of switch connected to pin RC2 and do the following (1) If switch = 0, the stepper motor moves clockwise. (2) If switch =1, the stepper motor moves anticlockwise. Also draw the interfacing diagram.	10M
Q.6	3000V	Write a short note on any two	
3000	(a)	Seven segment LED interfacing with PIC 18 Microcontroller.	10M
3000	(b)	LCD interfacing with PIC 18 Microcontroller.	10M
0,000	(c)	CCP modules of PIC 18 Microcontroller.	10M

[Time: 3 Hours]

Please check whether you have got the right question paper.

1. Question No.1 is compulsory.

N.B:

[Marks:80]

2. Attempt any three questions out of remaining six questions. 3. Assume suitable data if necessary and justify the same. 20 Q.1 Attempt any four of the following. a) What happens if the projects are not managed properly? b) What is the difference between functional manager and project manager? c) Explain the Maslow's hierarchy of motivation. d) What is the importance of resource allocation in projects? e) Differentiate bet CPM and PERT. Q.2 a) Explain the planning phase of a project in detail. **10 10** b) Explain the profitability calculation methods used in PM. Q.3 a) Why it is important to consider social cost benefits in project? 10 b) Write a detailed note on types of communication required in projects. 10 a) What is meant by risk analysis? How it is done? Q.4 10 b) What are the sources of finance in projects? 10 Q.5 a) What is the process of crashing the activities in project? Explain. 10 b) Explain the importance of SWOT analysis and how it is done? 10 Q.6 a) What is meant by market and demand? Explain. 10 b) Explain how contract management is done? 10