		(3 Hours)	Total Marks: 80	320
		Note:-	 Question number 1 is compulsory. Attempt any three questions from the remaining five questions. 	
			3) Figures to the right indicates full marks	
Q.1	a)	Evaluate Laplace transform of $t e^{3t} sin4t$		
	b)	Find half range fourier sine series for x^2 in $(0, \pi)$		
	c)	Find the directional derivative of $4xz^2 + x^2yz$ at $(1,-2,-1)$ in the direction of $2\bar{\iota} - \bar{\jmath} - 2\bar{k}$		
	d)	Find k such that $\frac{1}{2}\log(x^2 + y^2) + i \tan^{-1}\left(\frac{kx}{y}\right)$ is analytic		
Q.2	a)	Show that the function is Harmonic and find it's conjugate $u = e^{2x}(x\cos 2y - y\sin 2y)$		
	b)	Evaluate $L^{-1}\left[\frac{S^2}{(s^2+9)(s^2+4)}\right]$, using convolution theorem		
	c)		n's theorem in the plane for $\int_C (xy + y^2)dx + x^2dy$, where C is the ded by the curves $y = x$ and $y = x^2$	08
Q.3	a)	Solve $(D^2 + tranmsform)$	$(-2D+1)y = 3te^{-t}$, $y(0) = 4$, $y'(0) = 2$ by using Laplace	06
	b)	Show that $\overline{F} = (4xy + 3x^2z)\overline{\iota} + (2x^2 - 2z)\overline{\jmath} + (x^3 - 2y)\overline{k}$ is conservative. Find the work done in moving a particle from $A(1,0,1)$ to $B(2,1,1)$.		06
	c)	Find the Fourier series for the function $f(x) = \left(\frac{\pi - x}{2}\right)^2$ in the interval $0 \le x \le$		08
	É	2π . Hence	deduce $\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$	
Q.4	a)	Obtain the F	Fourier Series of $x\cos x$ in $(-\pi,\pi)$	06
	b)	Find the bili	near transformation which maps the points 1 onto the points $w = 0.1, \infty$	06
	c)	Evaluate i.	$L^{-1}[tan^{-1}\left(\frac{a}{s}\right)]$ ii. $L^{-1}\left[\frac{e^{-\pi s}}{s^2-2s+2}\right]$	08
Q.5	a)	Evaluate \int_0^c	$\overset{\infty}{e^{-t}} \left[t \int_0^t e^{-4u} \cos u du \right] dt$	06
	b)	Show that u	nder the transformation $w = \frac{z-i}{z+i}$, real axis in Z-plane is mapped onto	06
	c)	the circle w	2	08
		Find the Fo $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	ourier expansion of $f(x) = x^2$ in $(0, a)$. Hence deduce that $\frac{\pi^2}{-3} = \frac{1}{2}$	00

Paper / Subject Code: 51501 / Applied Mathematics-III

- Q.6 a) Find the orthogonal trajectories of the family of curves $x^2 y^2 + x = c$ b) Find the Fourier cosine integral representation of the function $f(x) = \begin{cases} 1 x^2, & 0 \le x \le 1 \\ 0, & x > 1 \end{cases}$
 - Hence evaluate $\int_0^\infty \left(\frac{x \cos x \sin x}{x^3}\right) \cos \frac{x}{2} dx$ c) Evaluate by using Gauss Divergence theorem $\iint_S \overline{N} \cdot \overline{F} ds$, where $\overline{F} = 4x\overline{\iota} + 3y\overline{\jmath} - 2z\overline{k}$. S is the surface bounded by x=0, y=0. Z=0 and 2x + 2y + z = 4.

[Time: Three Hours]

[Marks:80]

N.B:

- 1. Question.No.1 is compulsory.
- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data wherever necessary.
- Q.1 Attempt any five questions.

[20 Marks]

- a) Explain any one method of full wave rectification with the help of labelled diagram.
- b) How transistors can be used as switches?
- c) Plot the output waveform for the circuit shown below (Fig.1).

Fig.1

- d) Design an inverting amplifier whose gain is variable over the range $-4 \le A \le 0$ by means of a $10K\Omega$ pot.
- e) Define and explain harmonic distortion.
- f) Sketch the output waveform for the circuit of fig.2, if the input signal is a 5 V peak sine wave.

Q.2 a) Determine V_0 and I_D for the series circuit of Fig. 3.

[6 Marks]

Fig. 3

b) Derive the stability factor S (Ico) for emitter stabilized Bias circuit. Calculate S(Ico) for the same circuit if R_B =510 K Ω , R_E =1.5 K Ω , R_E =1.

58972 Page **1** of **3**

Paper / Subject Code: 51502 / Analog Electronics

c) What are the characteristics of an ideal op-amp? Explain why open loop configurations are not used in linear applications.

[6 Marks]

Q.3 a) Find I_c and V_{EC} for the pnp transistor

[6 Marks]

Fig.4

- b) Explain thermal runaway in case of the BJT. How we can do compensation for the [6 Marks] same
- c) The transistor in Fig.5 has the following maximum ratings: $P_D(max) = 800$ mW, [8 Marks] $V_{CE}(max) = 15$ V, and $I_C(max) = 100$ mA. Determine the maximum value to which V_{CC} can be adjusted without exceeding a rating. Which rating would be exceeded first?

Q.4 a) Explain the working of D MOSFET with neat diagrams.

- [8 Marks]
- b) Explain with a neat diagram a transformer coupled audio power amplifier.
- [6 Marks] [6 Marks]
- c) Sketch the 3-input inverting averaging circuit and derive an equation for the output voltage.
- voltage
- Q.5 a) Write the design procedure for High pass filter with suitable example.

[8 Marks] [6 Marks]

- b) What are the conditions for stable oscillations? Draw the circuit of Wein Bridge oscillator and derive equations for frequency and gain.
- [6 Marks]
- c) What is the basic difference between a basic comparator and the Schmitt trigger. For an inverting Schmitt trigger if $R_1=180\Omega$, $R_2=80K\Omega$, $V_{in}=500mV_{pp}$ sine wave, and the saturation voltages are $\pm15V$. Determine upper, lower threshold voltage and hysteresis voltage.

Paper / Subject Code: 51502 / Analog Electronics

- Q.6 a) Draw and explain series voltage regulator.
 - b) Explain four types of controlled sources using opamp.c) Derive the expression for the circuit shown below, Plot the waveforms for output [8 Marks]

[6 Marks]

c) Derive the expression for the circuit shown below, Plot the waveforms for output voltage of the ideal op-amp shown in fig.6 for the triangular-wave input shown below.

58972 Page **3** of **3**

[Time: Three Hours]

[Marks:80]

N.B:

- 1. Question.No.1 is compulsory.
- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data wherever necessary.
- 1 Attempt the following:

-20

a Find the value of I₁

b In the given network the switch is closed at t= 0. With zero current in the inductor find i, $\frac{di}{dt}$, at t= 0⁺

- c What are the advantages of an A.C. Bridge?
- d Obtain pole-zero plot of the following function

$$F(s) = \frac{s(s+2)}{(s+1)(s+3)}$$

2 a Explain construction and working of D'Arsonaval Galvanometer.

10

b Test whether polynomial is Hurwitz;

10

- i) $P(s)=s^4+s^3+5s^2+3s+4$
- ii) $P(s)=s^5+3s^3+2s$
- 3 a State how you will derive the expression for frequency in case of Wien Bridge.

10

b Explain construction and working of PMMC instrument.

10

4 a Find Thevenin's equivalent network

TURN OVER

2

b In the network shown in fig. At t=0, the switch is opened. Calculate v, $\frac{dv}{dt}$ at t=0+

10

5 a Obtain ABCD parameters for the network shown in fig.

10

b In the network shown below determine V_a and V_b .

10

6 a What are Q meters and how do they work?

10

b For the network shown below, calculate the maximum power that may be dissipated in load resistor $R_{\rm L}\,$

10

