[Time: 3 Hours] [Marks:80] Please check whether you have got the right question paper. N.B: 1. Questions No.1 is compulsory. - 2. Solve three questions from remaining questions. - 3. All questions carry equal marks. - 4. Assume suitable data if required. - Q.1 a) What is the difference between overhead & underground system. 20 - b) Explain skin effect & proximity effect. - c) Explain transposition of power line - d) Explain step & touch potential. - Q.2 a) What is string efficiency & Derive expression for string efficiency? 20 - b) A 3- phase double circuit line has vertical configuration as radius of each conductor is 1.1 cm. the horizontal distance h is 5 m & Vertical distance D is 3m. Find the inductance per phase per km of line. - Q.3 a) Derive an expression from inductance of 1-phase, 2- wire line with solid conductor 20 .write assumption. - b) For a simple power system shown in below, draw the per unit impedance diagram on a common base of 5000 VA & 250 V. - Q.4 a) Derive an expression for capacitance per phase per km of a 1-phase line taking into account effect of ground. - b) Find A, B, C, D parameters of a 3-phase, 80km, 50 hz transmission line with series impedance of 0.15 + j0.78 ohm/ km & a shunt capacitance of j 5 X 10⁻⁶ mho/km .use nominal T configuration. - Q.5 a) Prove that per unit impedance of transformer can be made some referred to both winding by selecting proper voltage base in either side. - b) Explain tuned power line. 20 68496 Page **1** of **2** Q.6 a) Explain the measurement of earth resistance & soil resistivity. b) Explain the different method of neutral grounding. ****** 68496 Page **2** of **2** **20** (3 Hours) (Total Marks: 80) **N.B.: Question No. 1** is **Compulsory**. > 2) Attempt any three from the remaining. 1. a) Find the extremal of $$\int_{x_1}^{x_1} \frac{1+y^2}{y'^2} dx$$. (05) b) Is the following set of vectors in $$P_2$$ linearly independent? $2 - x + 4x^2$, (05) $3 + 6x + 2x^2$, $2 + 10x - 4x^2$? d) Evaluate $$\int (z^2 - 2\bar{z} + 1) dz$$ over a closed circle $x^2 + y^2 = 2$. (05) 2. a) Find the extremal $$\int_0^{\pi} (y^2 - {y'}^2 - 2y\cos x) dx$$, $y(0) = 0$, $y(\pi/2) = 0$. (06) (06) $$A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$$ b) Find the Eigen Values and Eigen Vectors of the matrix $A^3 + 3I$, where $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ c) Obtain all possible expansion of $f(z) = \frac{z}{(z-1)(z-2)}$ about z = -2 indicating (08)region of convergence. 3. a) Verify Cayley - Hamilton Theorem for $$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & -2 \\ -2 & 0 & 1 \end{bmatrix}$$ and find A^{-1} . (06) (06)Using Cauchy's Residue Theorem evaluate $\int_{C}^{\infty} \frac{e^{z}}{z^{2} + \pi^{2}} dz$ where C is |z|=4. c) Show that a closed curve 'C' of a given fixed length (perimeter) which encloses (08)maximum area is a circle. Find an orthonormal basis for the subspace of R^3 by applying Gram-Schmidt 4. (06) process, where $u_1 = (1,0,1,1), u_2 = (-1,0,1,1), u_3 = (0,-1,1,1).$ **b)** Find A^{20} for the matrix $A = \begin{bmatrix} 2 & 3 \\ -3 & -4 \end{bmatrix}.$ (06) c) Reduce the Quadratic Form 2xy + 2yz + 2zx to diagonal form by orthogonal (08)reduction method. a) Using Rayleigh-Ritz Method, find an approximate solution to the extremal problem (06) $\int_0^1 (y'^2 - y^2 - 2yx) dx, \quad y(0) = 0, \ y(1) = 0.$ **b)** Let V be a vector space containing 2×2 matrices and $W \subseteq V$ such that (06) $W = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}.$ Is W a subspace of V? Justify.
 Show that the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$ is c) (08)diogonable.Also find the transforming matrix and diagonal matr (06) (06) a) Using Cauchy's Residue Theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{13+5\sin\theta}$. b) Evaluate $\int_{1-i}^{2+i} (2x+1+iy) dz$ along the curve $x=t+1, y=2t^2-1$. c) Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$ (08) 67770 Page 1 of 1 | | | [Time: 3 Hours] | ks:80] | |----------|----------------------|--|-----------------------------------| | | | Please check whether you have got the right question paper. | 0 1 20 0
2 0 1 2 | | | N.B: | | (2) (2) A | | | | 2. Attempt any THREE questions from remaining | | | | | 3. Figures to right indicate full marks. | | | Q. 1 | Attempt | any Four questions. | \$ \$3.53
\$ 13.63
\$ 13.63 | | | - | back emf (Eb) makes the DC motor a self regulating machine. | (05) | | | | the electro-mechanical energy conversion. | (05) | | | c) Briefly e | explain the Swinburne's test for DC machine. | (05) | | | | the conditions for parallel operation of single phase transformer. | (05) | | | e) Why the | terminal voltage of DC shunt generator falls when it is loaded. | (05) | | Q. 2 | · • | the concept of singly excited machines and derive the expression for the | (10) | | | | agnetic torque. ne expression of copper saving in Auto-Transformer. | (10) | | Q. 3 | A) Derive th | ne expressions for Demagnetizing Amp-turns (ATd/pole) and cross magnetizing | (10) | | ~ | | rns (ATc/poles) for armature reaction. | (=0) | | | | ntical dc shunt machine, when tested for Hopkinson's test, gave the following | (10) | | | readings. | | ` / | | | Line volt | tage = 230V | | | | Line curi | rent (excluding field currents) = 30A | | | | Motor A | rmature current = 230A | (10) | | | Field cur | crents 5A and 4A. | | | | If the arm | mature resistance of each machine = 0.025Ω , calculate the efficiency of each . | | | Q. 4 | A) Explain t | the Sumpner's test for single phase transformer. | (10) | | | - O/ -/ | gle phase transformers shared a load of 400 KVA at 0.8 p.f. lagging. Their | (10) | | | | nt impedances referred to secondary windings are $(1 + j2.5)$ and $(1.5 + j3)$ ohms | | | | respectiv | vely. | | | | Calculate | e the load shared by each transformer. | | | Q. 5 | A) Explain | the necessity of starter and hence explain the working of three point starter. | (10) | | | B) A 7.46 k | w, 220v, 900 rpm shunt motor has full load efficiency of 88% and armature | (10) | | 3 | resistanc | e of 0.08Ω , while shunt filed current of 2A. | | | 360 | | peed of this motor is reduced to 450 rpm by inserting a resistance in armature | | | | | The load torque remains constant, find the motor output efficiency and the extra e inserted in armature circuit. | | | Q. 6 | Write sh | ort note on each | (20) | | 1, 65 to | A) Electrica | l braking in separately excited DC motor. | | | 2,23,21 | B) Commut | ation process in DC Generator. | | | 500 | 2, 3, 26, 53, 34, 50 | 8,49,48,80 | | 68407 | | (Time: 5 Hours) [Total Warks: 60] | 12 6 6 F | |-----|--|----------------------| | 2) | Question No.1 is Compulsory Answer any three questions out of remaining. Assume suitable data if required. | | | Q.1 | a. Define unit step and impulse signal b. Find the Fourier transform of $x(t) = e^{-2t}u(t-2)$ c. Obtain the Z transform of $x(n)=(n-2)u(n)$ d. Prove any two DFT properties. | 5*4 | | Q.2 | a) Check the linearity, stebility and time invariance of the system $y(t) = x^3(t)$
b) Sketch the signal $-2u(t+2 \text{ and})$ and $r(-t+3)$
c) Check whether the given signal $X(t)=2\sin^2w_0t$ is power signal or not. | (10)
(05)
(05) | | Q.3 | i) Find the initial value and final value of X(Z) = 10z(z-0.4)/(z-0.5)(z-0.3) ii) What you mean by ROC? Mention the significance. Find the ROC of finite duration right sided signal. b) | (05)
(05) | | | $H(Z) = \frac{(1-0.5Z^{-1})(1-Z^{-1})}{(1+0.2Z^{-1})(1+0.8Z^{-1})(1-0.8Z^{-1})}$ I. Give ROC condition II. Sketch pole Zero diagram III. Find the response of the system Comment on the stability | (10) | | Q.4 | a) Find the phase and magnitude response of the system h(n)= [-1, -1/2] b) A causal LTI system is described by the difference equation. y(n)-3/4y(n-1)+1/8y(n-2) = u(n)+u(n-1) Find the natural response of the system due to step input. | (10)
(10) | | Q.5 | a) State sampling theorem. How aliasing occurs? How it can be eliminated? b) Perform convolution of the following casual signals $X_1(t) = t.\ u\ (t) ; t \ge 0 \qquad X_2(t) = e^{-5t}\ .u\ (t) ; t \ge 0$ c) Find the Fourier transform of the signum signal d) Derive and sketch the ROC of any three infinite duration signals. Also comment on stability. | [5*4] | | Q.6 | a)An 8 point sequence is given by x(n)={2,4,6,8,2,4,6,8}.Compute 8 point DFT of x(n) by radix -2 DIT – FFT method. b) Perform the circular convolution using DFT. X₁(n)={3,1,3,1} X₂(n)={1,2,3,4} | (10)
(10) | N.B.: - (1) Question No.1 is compulsory.(2) Attempt any Threequestions out of remaining five questions. Q. P. Code: 38385 ## **Duration – 3 Hours** ## **Total Marks - 80** | | (3) Assume suitable data if necessary and justify the same. | | |------------------|--|----------| | Q 1. | A) List and draw the type of shift registers | 04 | | | B) Draw the circuit of an Opamp as inverting amplifier. Also draw the input and output waveforms | 04 | | | C) Draw and explain in brief the block diagram of an operational amplifier. | 04 | | | D) State and prove De-Morgan's theorem. | 04 | | | E) Comment on the frequency response of an operational amplifier | 04 | | Q 2 a) | Explain the operation of IC 555 operating as an Monostable multivibrator and derive the equations for output voltage frequency. | 10 | | Q 2 b) | Explain first order Butterworth low pass filter and also derive expression for voltage gain. | 10 | | Q 3 a) | With neat diagrams and waveforms explain Opamp operating as a differentiator. Also Sketch the output waveform for the circuit when the input is a square waveform. | 10 | | Q 3 b) | Minimize the Boolean expression using K-Map and implement using gates.
$Y = \Sigma m(1,2,9,10,11,14,15)$ | 10 | | Q 4 a) | With neat diagram and waveforms describe Schmitt trigger using an Opamp. | 10 | | Q 4 b) | Implement the following expression using 3 data select input multiplexer $F(A, B, C, D) = \sum m(0, 1, 2, 3, 4, 10, 11, 14, 15)$ | 10 | | Q 5 a)
Q 5 b) | Design a 3 bit binary to gray code converter and implement using logic gates Design a mod-5 synchronous counter using JK flip flop. Also draw the timing diagram. | 10
10 | | Q 6 a) | Explain successive approximation type ADC | 10 | | Q 6 b) | List the types of logic family. Explain any logic family in detail. | 10 | (Time: 3 Hours) **Total Marks: 80** | ote: | | | | | | | | 87 87 87 88 88 88 88 88 88 88 88 88 88 8 | 5,70,00,00,00,00
5,70,00,00,00,00 | |----------------|--|---------------|---------|-----------|----------|----------|--------|--|--------------------------------------| | | Question 1 | is com | pulsory | 7. | | | | | | | | Solve ant t | | - | | estions | no. 2 to | 5. ARE | | | | • , | Assume ne | cessary | data wl | herever | necessar | y. | 2966 | 12000
12000 | | | Q 1 | Answer the following questions A) Define error, accuracy and precision of numbers with suitable examples. B) Derive the condition for convergence in case of Newton Raphson method. C) What do you understand by unconstrained optimization? Write the algorithm for Golden section search method? D) What are the basic requirements of Linear programming problem? | | | | | | | | | | Q2 a) | Solve the equation $\frac{dy}{dx} = x^2 + y^2$, using 2^{nd} order RK method at $x=0.2$ and $x=0.4$, $y(0)=0$. | | | | | | | | | | Q2 b) | Solve the equation $dy/dx = 1 + xy^2$ with y (0) = 0.2 using Adam's Bashforth method. Determine y at x=0.5 with a step size of 0.1. | | | | | | | | | | Q3 a) | Write the algorithm for Newton's forward difference interpolation and calculate f(3.5) for the following data | | | | | | | | | | | X | 200 | 3 | 4 | 5 | 6 | 37 | 8 | 9 | | | f(x) | 19 | 48 | 99 | 178 | 291 | 444 | 643 | 894 | | (3 b)
(3 c) | subjected to $x_1 + x_2 = 1$
$x_1, x_2 \ge 0$
Using Lagrange's multiplier method.
What are the basic requirements of Linear programming? Discuss the various | | | | | | | | | | (4 a) | terms used in LPP. Minimize cost $Z = 400x_1 + 800x_2$ subject to $6x_1 + 2x_2 \ge 12$ $2x_1 + 2x_2 \ge 8$ $4x_1 + 12x_2 \ge 24$ $x_1, x_2 \ge 0$ using graphical method. | | | | | | | | | | 35.50 | 25/25/25/25 | . Un' . O' W | | | | | | | | Page 1 of 2 77394 10 Q5 a) Use LU Decomposition method to find solution of the following system of equations. $$2x + 2y + 3z = 4$$ $4x - 2y + z = 9$ $x + 5y + 4z = 3$ - Q5 b) Use method of Regula Falsi to obtain root of equation sins = x 2, near x = 2.5 for 5 iterations. x is in radians. Write the algorithm for this method. 10 - Q6 a) Using Simplex method solve $\begin{aligned} Max \ Z &= 500x_1 + 600x_2 \\ subjected \ to \ x_1 + 2x_2 &\leq 15 \end{aligned}$ $$3x_1 + 2x_2 \le 18$$ $$x_1, x_2 \ge 0$$ Q6 b) Solve the equation $\frac{dy}{dx} = x - y^2$ using Milne's Predictor-Corrector method. Find y at x = 0.8 and x = 1 with step size of 0.2. Given that y(0) = 0, y(0.2) = 0.0199, y(0.4) = 0.079, y(0.6) = 0.1762. ******